
What is
Functional
Programming?

Eric Normand

Outline
The problem with software: complexity

Mastering time

Mastering (state)space

Mastering architecture

A model of functional programming

The problem with software: complexity

Essential complexity Accidental complexity

Sources of complexity
Possible histories

Possible codepaths

Possible changes

Mastering time

Mastering (state)space

Mastering architecture

Mastering time

JavaScript has this problem, too
var ovenTemperature = 100;

ajaxGet("http://api.com/number", function(number) {
 ovenTemperature *= number;
});

ajaxGet("http://api.com/number", function(number) {
 ovenTemperature += number;
});

Where do timelines come from?
Multiple threads

Multiple processes

Multiple machines

Async operations

What's the problem?
Many histories are more than we can keep in our heads

Different histories give different results

Sometimes we can't reproduce the bad history (heisenbug)

Mastering (state)space
Each conditional creates at least 2 branches

Branches multiply the number of possible codepaths

More codepaths means it's harder to hold in your head

Do all codepaths do the right thing?

Mastering architecture

Guarding against unforeseen change

Stratified design
Layers built on layers

Each layer adds domain meaning to the layer below it

Chemistry

Fundamental cooking techniques

Cuisine building blocks

Dishes

protein, acid, heat, etc.

chopping, slicing, applying heat, etc.

sauces, trinity, roux, browning, etc.

gumbo, jambalaya, étouffée, etc

A model of functional programming

Action + Action => Action
Action + Calculation => Action
Action + Data => Action

Calculation + Calculation => Calculation
Calculation + Data => Calculation

Data + Data => Data

Eric Normand
Follow Eric on:

Eric Normand @EricNormand
eric@lispcast.comlispcast.com

https://www.linkedin.com/in/eric-normand/
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://lispcast.com
https://lispcast.com

