The Elements of a
Functional Mindset

Eric Normand

PurelyFunctional.tv

https://purelyfunctional.tv/

What is uniquely
human?

Prelude

Op. 28, No. 7

Frederic Chopin

Andantino

|4 --
TS [eenll G oMM § Ma
i |
I o[V _ i
/ Yo £ T
TTom ™ H_l .‘4 .w
S v o
| v 77 ~
T T AL
T 'V T
—.l it Iy 1) A ‘Hl-
iﬂﬁm i) YA olel]
] k] N u _.1
(YN Q|
tr|w L
oall o T
all W MR- || S
L
0y il
v WL i
wll M .wu_._ 1l
TS o X
Lyll.\ A
il wlall
IH il m TR, o
i S wall
P-H s || “ﬂ I
3 i) A
TT® 1M T —M . n
qeaul & Sul [N 4
Hmmn] ¥ .L|\ m.. ™~
>R N I av 4|
: P g
& e 3\

FIEA?M. NOS

3.?;33"930 Al

Le-fad. 500" Gt Ppes NP erinines 1 eld
S0 % Intecnal Draing
Hago ~Top of om
Porapatsshamn 1| ys. i)

TYPICAL SECTION

12" Copgar =,
ra;’o:mh'pwfo-v. Note: For Header "!:yow D.
= “‘0&-0"2 . 4 Chamfor,
el Gunite Facw
Morizontal Gallery of Dom..__
irgl Stairway
& o gt Vorioble

TYPICAL ELEVATION

CONTRACTION JOINT

“Varticol Keysin
RodralJzints

" Copper Expansion Strip Grot Stop

. § JOINT PLAN J~-J
o L r Horizontal Keys -pocodlo‘-O‘murs S
A — e
H v »- &
' D - Details'of Radial Joints ond Grouting Units omitted '
i ~-c SECTION K~K ;
B TYPICAL DETAIL OF JOINTS AND KEYS ‘,‘,:',::’;_’
1ot Gatvanized Pipe Neaders : \
] { Galvanized ipe Risers
...... e Nate:-Elavation of all Horizontai
Ml
TYPICAL SECTIONAL ELEV. ADUT, ddddddddy Grou? Heoders fobe
TYPICAL SECTIONAL ELEV. ABUT. CUTOFF DRAINAGE SYSTEM 'j"; i mined in the Field
CUTOFF GROUTING SYSTEM Spiral Stairwo, aan‘ GRS
)
LR T o MR F
: T IR
=V TiaaiG :
COPPER EXPANSION . gk : B g
S AT
STRIP SECTION L-L e Condit Bor--
-Roa 220" 12°Gutter, . Moriz. Gallery ¥ OO O wma gb
5 o e e Vort Groove {TELIO S = O ~Ausof RfeTEECI BITAIH Ta &5
< ol 9 DA - - v T . 51
dmesao ° 3 pinseactiondolitry. ﬁ B £z
e ST LT ARG 2
e oy IS ST i Ty RN .
GlnrcmcIDrvm! m-m D-O‘L‘n e i e H ; T Iy Galv. Pipe Risers
. ; g R A S gein
NeHH! m"’:. s ; JL_ s DET!
i v - - = .t E 1y e
- Fx 2 gt oce ! WO -
lnsp«noncanorr t"ﬂ%"]ﬂ 3 5 R i
> SECTION M-M 3 PR 3
, 1 R A S
] g aetitel it dd Hi
0 L N1 f <)
d . e
RS TS ol E A
S PR e T U 2:-.{::; 3'.14;.. o
-§ Foundotion Drains MMM ol AHE O e An!
D PR P R R P A
), O R R L T e T
AL
A . R
;.‘;‘. H ¢ iy DETAIL AT "E"ANDF* DETAIL AT'A" AND"C”
i o X
< i FRR R
e 'i X M e N":: ? OEMATMENT OF THE INTEROR
"""" A A o Rt BUREAU OF RECLAMATION

BOULDER CANYON PROVECT
HOOVER DAM

MAXIMUM SECTION OF DAM
GROUT AND DRAINAGE SYSTEM

B i ey P
W

omawwcAM, CR gunmirrce
maceo AAR

45-D-924

Edsger Dijkstra

The purpose of abstraction is
not to be vague, but to
create a new semantic level
in which one can be
absolutely precise.

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

No :(

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records [] |
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

Current average: 754/100 = 7.54
Read average: ?7?/100 = 77?7

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records [] |
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

Current average: 754/100 = 7.54
Read average: ?7?/100 = 77?7

There are a lot of records, so this calculation takes a long time. We
want to get the current average of all records done so far before
it finishes. Can we express that?

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records [] |
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

Current average: 754/100 = 7.54; 801/101 = 7.93
Read average: 801/100 = 8.01

Problem:
‘In-between’ state.

Solution:
Make mutation atomic.

(def record-sum (atom 0))
(def record-count (atom 0))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

(def record-average (atom {:sum @
:count 03}))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

(def record-average (atom {:sum 0
:count 0}))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-sum + (:score record))
(swap! record-count + 1))
(/ @record-sum @record-count))

(def record-average (atom {:sum 0
:count 0}))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(/ @record-sum @record-count))

(def record-average (atom {:sum 0
:count 0}))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(/ @Qrecord-sum @record-count))

(def record-average (atom {:sum 0
:count 0}))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(let [{:keys [sum count]} @record-average]
(/ sum count)))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(def record-average (atom {:sum @
:count 03}))

(defn average-records []
(doseq [record (fetch-records)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(let [{:keys [sum count]} @record-average]
(/ sum count)))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(def record-average (atom {:sum 0
:count 0}))

(defn average-records [1id]
(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(let [{:keys [sum count]} @record-average]
(/ sum count)))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(def record-average (atom {:sum @
:count 03}))

(defn average-records [id]

(doseq [record (fetch-records id)] \
(swap! record-average f

(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(let [{:keys [sum count]} @record-average]
(/ sum count)))

Problem:
Threads will write over each
other in global state.

Solution:
Make state local.

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(def record-average (atom {:sum @
:count 03}))

(defn average-records [id]

(doseq [record (fetch-records id)] \
(swap! record-average f

(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(let [{:keys [sum count]} @record-average]
(/ sum count)))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

T
b4

(def record-average (atom {:sum
:count 03}))

(defn average-records [1d]
(doseq [record (fetch-records 1id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(let [{:keys [sum count]} @record-average]
(/ sum count)))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(defn average-records [id] » “ ﬁ «

(let [record-average (atom {:sum “

:count @})] | h£

(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(let [{:keys [sum count]} @record-average]
(/ sum count))))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(defn average-records [id]
@-*'i'i"'

(let [record-average (atom {:sum

:count 03})]
(future
(doseq [record (fetch-records id)]

(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))

:count (+ count 1)}))))
(fn []

(let [{:keys [sum count]} @record-average]
(/ sum count)))))

There are a lot of sets of records that we want to calculate at the
same time in different threads. Can we express that?

(defn average-records [id]
(let [record-average (atom {:sum 0 # “ “ «

:count 0

:finished false})]
(future
(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)
:finished false})))
(swap! record-average assoc :finished true))
(fn []
(let [{:keys [sum count finished]}
@record-average]
[(/ sum count) finishedl]))))

(defn average-records [1d]
(let [record-average (atom {:sum 0
:count 0
:finished false})]
(future
(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)
:finished false})))
(swap! record-average assoc :finished true))
(fn []
(let [{:keys [sum count finished]}
@record-average]
[(/ sum count) finished]))))

state:

non-atomic -> atomic
global -> local

more meaningful
more precise

more general

(defn average-records [id]
(let [record-average (atom {:sum 0
:count ©
:finished false})]
(future
(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(swap! record-average assoc :finished true))
(fn []
(let [{:keys [sum count finished]}
@record-average]
[(/ sum count) finished]))))

(defn average-records [id]
(let [record-average (atom {:sum 0
:count 0
:finished false})]
(future
(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)})))
(swap! record-average assoc :finished true))
(fn []
(let [{:keys [sum count finishedl]}
@record-average]
[(/ sum count) finished]))))

(defn accumulate-average [record-average id]
(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)
:finished false})))
(swap! record-average assoc :finished true))

(defn average-records [id]
(let [record-average (atom {:sum 0

:count 0
:finished false})]

(future (accumulate-average record-average id))

(fn []

(let [{:keys [sum count finished]}
@record-average]
[(/ sum count) finished]))))

(defn accumulate-average [record-average id]
(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)
:finished false})))
(swap! record-average assoc :finished true))

(defn average-records [id]
(let [record-average (atom {:sum 0

:count 0
:finished false})]

(future (accumulate-average record-average id))

(fn []

(let [{:keys [sum count finished]}
@record-average]
[(/ sum count) finished]))))

(defn accumulate-average [record-average id]
(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)
:finished false})))
(swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average-records [id]
(let [record-average (atom {:sum 0
:count 0
:finished false})]
(future (accumulate-average record-average id))
(fn [] (calculate-average @record-average))))

Some sets or records are in the Database (retched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

(defn accumulate-average [record-average id]
(doseq [record (fetch-records id)]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)
:finished false})))
(swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average-records [id]
(let [record-average (atom {:sum 0
:count 0
:finished false})]
(future (accumulate-average record-average id))
(fn [] (calculate-average @record-average))))

Some sets or records are in the Database (retched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

s

(fetch-records id)

Problem:
Side effect "buried” in logic.

Solution:
Separate side effect, call it elsewhere,
and pass result as argument.

Some sets or records are in the Database (retched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

s

(fetch-records id)

Some sets or records are in the Database (retched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

records
records

(fetch-records id)

Some sets or records are in the Database (retched by
fetch-records). But some are stored in memory. We want to
calculate the average of both types. Can we express that?

records

records

side effects:
buried -> separated

(defn accumulate-average [record-average records]
(doseq [record records]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)
:finished false})))
(swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average-records [records]
(let [record-average (atom {:sum 0
:count 0
:finished false})]
(future (accumulate-average record-average records))
(fn [] (calculate-average @record-average))))

We are calculating the average score, but now we need to find
the average age. Can we express that?

(defn accumulate-average [record-average records]
(doseq [record records]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (:score record))
:count (+ count 1)
:finished false})))
(swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average-records [records]
(let [record-average (atom {:sum 0
:count @
:finished false})]
(future (accumulate-average record-average records))
(fn [] (calculate-average @record-average))))

We are calculating the average score, but now we need to find
the average age. Can we express that?

(defn accumulate-average [record-average records]
(doseq [record records]
(swap! record-average

(fn [{:keys [sum count]}]
{:sum (+ sum (:score record)) «
:count (+ count 1)

:finished false})))
(swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average-records [records]
(let [record-average (atom {:sum 0
:count 0
:finished false})]
(future (accumulate-average record-average records))
(fn [] (calculate-average @record-average))))

Problem:
Our function depends on
internal structure of data.

Solution:
Abstract the structure using a
fn argument.

We are calculating the average score, but now we need to find
the average age. Can we express that?

(defn accumulate-average [record-average f records]
(doseq [record records]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (f record))

:count (+ count 1)

:finished false})))
(swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average-records [f records]
(let [record-average (atom {:sum 0
:count 0
:finished false})]
(future (accumulate-average record-average f records))
(fn [] (calculate-average @record-average))))

We are calculating the average score, but now we need to find
the average age. Can we express that?

(defn accumulate-average [record-average f records]
(doseq [record records]
(swap! record-average
(fn [{:keys [sum count]}]
{:sum (+ sum (f record))

:count (+ count 1)

:finished false})))
(swap! record-average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average-records [f records]
(let [record-average (atom {:sum 0
:count 0
:finished false})]
(future (accumulate-average record-average f records))
(fn [] (calculate-average @record-average))))

We are calculating the average score, but now we need to find
the average age. Can we express that?

(defn accumulate-average [average f vals]
(doseq [val vals]
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum (f val))
:count (+ count 1)
:finished false})))
(swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average [f vals]
(let [average (atom {:sum 0
:count 0
:finished false})]
(future (accumulate-average average f vals))
(fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [average f vals]
(doseq [val vals]
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum (f val))
:count (+ count 1)
:finished false})))
(swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average [f vals]
(let [average (atom {:sum 0
:count 0
:finished false})]
(future (accumulate-average average f vals))
(fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [average f vals]
(doseq [val vals]
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum (f val))
:count (+ count 1)
:finished false})))

(swap! average assoc :finished true)) '

(defn calculate-average [{:keys [sum count finished]}]

[(/ sum count) finished]) I

(defn average [f vals]
(let [average (atom {:sum 0
:count 0
:finished false})]
(future (accumulate-average average f vals))
(fn [] (calculate-average @record-average))))

Problem:
What we calculate is buried in
how we calculate it.

Solution:
Dig out structure into one
place.

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [average f vals]
(doseq [val vals]
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum (f val)) «
:count (+ count 1)

:finished false})))

(swap! average assoc :finished true)) '

(defn calculate-average [{:keys [sum count finished]}]

[(/ sum count) finished]) I

(defn average [f vals]
(let [average (atom {:sum 0@

:count @
:finished false})] «

(future (accumulate-average average f vals))
(fn [] (calculate-average @Qrecord-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [accum average f vals]
(doseq [val vals]
(accum val))
(swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average [f vals]
(let [average (atom {:sum 0@
:count 0
:finished false})
accum (fn [vall
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum (f val))
:count (+ count 1)
:finished false})))]
(future (accumulate-average accum average f vals))
(fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [accum average f vals]
(doseq [val vals]
(accum val))
(swap! average assoc :finished true))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average [f vals]
(let [average (atom {:sum 0
:count @
:finished false})
accum (fn [vall]
(swap! average
(fn [{:keys [sum count]}]
{:sum (4 sum (f val))
:count (+ count 1)
:finished false})))]
(future (accumulate-average accum average f vals))
(fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [accum finish average f vals]
(doseq [val vals]
(accum val))
(finish))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average [f vals]
(let [average (atom {:sum 0
:count 0
:finished false})
accum (fn [vall]
(swap! average
(fn [{:keys [sum count]}]
{:sum (4 sum (f val))
:count (+ count 1)
:finished false})))
finish (fn [] (swap! average assoc :finished true))]
(future (accumulate-average accum finish average f vals))
(fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate-average [accum finish average f vals]
(doseq [val vals]
(accum val))
(finish))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average [f vals]
(let [average (atom {:sum 0
:count 0
:finished false})
accum (fn [vall]
(swap! average
(fn [{:keys [sum count]}]
{:sum (4 sum (f val))
:count (+ count 1)
:finished false})))
finish (fn [] (swap! average assoc :finished true))]
(future (accumulate-average accum finish average f vals))
(fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
(doseq [val vals]
(accum val))
(finish))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average [f vals]
(let [average (atom {:sum 0
:count 0
:finished false})
accum (fn [vall]
(swap! average
(fn [{:keys [sum count]}]
{:sum (4 sum (f val))
:count (+ count 1)
:finished false})))
finish (fn [] (swap! average assoc :finished true))]
(future (accumulate accum finish vals))
(fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
(doseq [val vals]
(accum val))
(finish))

(defn calculate-average [{:keys [sum count finished]}]
[(/ sum count) finished])

(defn average [f vals]
(let [average (atom {:sum 0
:count 0
:finished false})
accum (fn [vall]
(swap! average
(fn [{:keys [sum count]}]
{:sum (4 sum (f val))
:count (+ count 1)
:finished false})))
finish (fn [] (swap! average assoc :finished true))]
(future (accumulate accum finish vals))
(fn [] (calculate-average @record-average))))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
(doseq [val vals]
(accum val))
(finish))

(defn average [f vals]
(let [average (atom {:sum 0@
:count 0
:finished false})
accum (fn [vall]
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum (f val))
:count (+ count 1)
:finished false})))
finish (fn [] (swap! average assoc :finished true))
current (fn []
(let [{:keys [sum count finished]} @average]
[(/ sum count) finished]))]
(future (accumulate accum finish vals))
current))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
(doseq [val vals]
(accum val))
(finish))

(defn average [f vals]

(let [average (atom {:sum 0
:count 0 «

:finished false})
accum (fn [val]
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum (f val))
:count (+ count 1)
:finished false})))
finish (fn [] (swap! average assoc :finished true))

current (fn []
(let [{:keys [sum count finished]} @average]

[(/ sum count) finished]))]
(future (accumulate accum finish vals))
current))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
(doseq [val vals]
(accum val))
(finish))
(defn average-accumulator [f]
(let [average (atom {:sum 0
:count 0
:finished false})]
[(fn [val]
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum (f val))
:count (+ count 1)
:finished false})))
(fn [] (swap! average assoc :finished true))
(fn []
(let [{:keys [sum count finished]} @average]
[(/ sum count) finished]))1))
(defn average [f vals]
(let [[accum finish current] (average-accumulator f)]
(future (accumulate accum finish vals))
current))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
(doseq [val vals]
(accum val))
(finish))
(defn average-accumulator [f]
(let [average (atom {:sum 0
:count 0
:finished false})]
[(fn [val]
(swap! average
(fn [{:keys [sum count]}]

{:sum (+ sum (f val))
:count (+ count 1)
:finished false})))
(fn [] (swap! average assoc :finished true))
(fn L[]
(let [{:keys [sum count finished]} @average]
[(/ sum count) finished1))1))
(defn average [f vals]
(let [[accum finish current] (average-accumulator f)]
(future (accumulate accum finish vals))
current))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
(doseq [val vals]
(accum val))
(finish))
(defn average-accumulator []
(let [average (atom {:sum 0
:count 0
:finished false})]
[(fn [val]
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum val)
:count (+ count 1)
:finished false})))

(fn [] (swap! average assoc :finished true))

(fn []
(let [{:keys [sum count finished]}
@average]
[(/ sum count) finished]))1))
(defn average [f vals]

(let [[accum finish current] (average-accumulator)]
(future (accumulate (comp accum f) finish vals))

~1irrent)

(average :score (fetch-records 10))

(average :age (fetch-records 10))

Now we need to calculate the sum. Can we express that?
(defn accumulate [accum finish vals]
(doseq [val vals]
(accum val))
(finish))

(defn average-accumulator []
(let [average (atom {:sum 0
:count 0
:finished false})]
[(fn [val]
(swap! average
(fn [{:keys [sum count]}]
{:sum (+ sum val)
:count (+ count 1)
:finished false})))
(fn [] (swap! average assoc :finished true))
(fn []
(let [{:keys [sum count finished]}
@Qaverage]
[(/ sum count) finished]))1))
(defn average [f vals]
(let [[accum finish current] (average-accumulator)]
(future (accumulate (comp accum f) finish vals))

Now we need to calculate the sum. Can we express that?

(defn accumulate [accum finish vals]
(doseq [val vals]
(accum val))
(finish))

(defn sum-accumulator []
(let [average (atom {:sum 0
:finished false})]
[(fn [val]
(swap! average
(fn [{:keys [sum]}]
{:sum (+ sum val)
:finished false})))
(fn [] (swap! average assoc :finished true))
(fn L[]
(let [{:keys [sum finished]}
@average]
[sum finished]))1))

(defn sum [f vals]
(let [[accum finish current] (sum-accumulator)]

(future (accumulate (comp accum f) finish vals))

~1irreant)

(average :score (fetch-records 10))
(average :age (fetch-records 10))

(sum :score (fetch-records 12))

dependencies:
concrete structure -> abstraction
disparate structure -> consolidated

Eric Normand
LispCast

Follow Eric on:

[Eric Normand ¥ @EricNormand
® lispcast.com X eric@lispcast.com

https://www.linkedin.com/in/eric-normand/
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://lispcast.com
https://lispcast.com
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://www.linkedin.com/in/eric-normand/
https://lispcast.com

