All I needed for FP I learned in High School Algebra

Eric Normand PurelyFunctional.tv

1 2 3 4 5 6

LOG OF JENNY 2											
Fre	om /	ORD	HOWE	to	RAPI	a iti	<	Date Top	5 16/	4 19	63
HOUR	LOG	DISTANCE COURSE MADE GOOD		WIND DIRECTION AND FORCE	BAROMETER LEEWAY				REMARKS		
A.M. 21	299.3	5.0	156	\$W.F.5-6	29.9	NIL	HEAVE	Y STEAS	s Bal	havent	ship
3.2	3.05.	5.7	156	S.W.F.S. 6	29.9	N.C.	One al	tos a	ve are,	nungu	nd the
33	3.08	3.0	756	S.W. 5-6	29.9	NIL	which	, corro	sponds	anth	Opar C
34	311	3.0	756	S.W. 5-6	29.9	NIL	20 Km	the of Br	Eaky !!	oan Flar	st- 100
3 5	319.5	8.5	T56	50 5-6	29.9	NIC	Very u	rcomfu	ilbell	down	boloa
36	330	8.5	756	SW 8.	299	NIL.	decks				
37	337.4	7.4	756	SW 7	29.95	NIL	SEAS	HEAVY	Hug.	E SW.	ELL'S
38	344.8	7.4	756	SW M	29.95	NIL					
39	350.4	6.4	756	SW M	29.95	NIL	30 FT	SWELL.	S CREVI	\$.70	PRAK
,710	357.4	6.4	136	SWM	29.95	NIL					
311	204.4	7.0	756	SW 7	29.95	NIL					
N. Z12	371-2	6.8	156	Swy	29.95	NIL.					
P.M. 31	1376-9	5.7	756	SW56	29.9	NIL	SEAS	RECEDI	ing		
32	382.7	5.7	156	5.W45	29.9	NIL	11	111	/		
3	387.7.	5.0	T56	856	29.9	NIC					
4	392:7	5.0	156	SES 6	299	Nil					
35	397.7	5.0	756	5556	29.95	NIC					
46	dia1-1	5.16	156	SES 6	30.0	NIL.	VERY	NIEA	RLY 1	REAC	HINE
47	410	30	756	SES 6	30.1	NIL	HER	MAXII	Enzlung	Huhh	S PIER
48	419	9.0	156	SF.5 6	30.1	NIL	THIS I	SHER	SSES7	Poin	TOF
49	428	9.0	756	51=5-6	30.1	NIL	SAILIO	NE W	iTH 7	MEN	INID J
410	137.9	9.9	TC6	SE6	30.1	NIC	ARAFT	1 OF	REAM	90	10751-0
11	445.2	4.3	150	SEG	30.1	NIL	THE	Hour	}		
8/12	452.6	7.3	156	SE 6	30.1	NIC	MODI	ERATE	SEA	5	
	LAT	ITUDE L	ONGITUDE					ENGINE (USED	Hrs	Mins.
				DAY'S RUN 140.12 Nautical Miles CRUISE RUN 341.2 Nautical Miles					FUEL-IN		1
	A.M	4						IN HAND	RECEIVED	CONSUMED	REMAINING
NOO	N 28	535 17	11 40'					ON	100	AJ //	7M
12. M.N.	PM 28	35'5 16	59° 50	SI ICO NIL SI						5/	
I.R. PASTIAN										j	

-

gl re

D

7

• Sum up all the rocks for the year

Average # of rocks per day

Biggest week

Smallest month

For the video and transcript of this presentation, click here:

https://lispcast.com/all-i-needed-for-fp-i-learned-in-high-s chool-algebra/

What makes numbers, an abstract idea, so useful for modeling real piles of rocks?

Correspondence of Properties

Information System

Distributed and Concurrent

Parallelization/ Distributed work

In distributed/parallel work, work comes back out of order

Order doesn't matter

b ╉ а

b a ╋

a + b = b + a

(f a b)

(f a b) (f b a) (= (f a b) (f b a))

(f a)

(g (f a))

(g (f a)) (g a)

(g (f a)) (f (g a))

(= (g (f a)) (f (g a)))

Parallelization/ Distributed work

Need to break up task to give to workers

Need to combine groups of answers

Needs to be cheap to break up and recombine groups

Grouping doesn't matter

a

5

3

1

С

╋

b

╋

(a + b)

С

╉

3

a + b + c

3

С

╉

╋

b

а

╋

5

(b + c)

4

a + b + c

(a + b) + c = a + (b + c)

a b c a b c

(fab) cable cable

(f a b) c a (f b c)

(f (f a b) c) (f a (f b c))

(f (f a b) c) (f a (f b c))

(= (f (f a b) c) (f a (f b c)))

Types

(= (f (f a b) c)
 (f a (f b c)))

return value of f and its two arguments need to be the same type

Whole Values

Combining two piles makes a new pile

Concatenating two lists makes a new list

Self-contained

(defn average [a b] (/ (+ a b) 2))

Order doesn't matter

Does grouping matter?

(= (average (average a b) c) (average a (average b c)) a = 10, b = 4, c = 6(average 10 4) => 7(average 7 6) => 6.5(average 4 6) => 5

(average 10 5) => 7.5

```
function average(numbers) {
  var sum = 0;
  var count = 0;
 for(i = 0; i < numbers.length; i++) {
   sum += numbers[i];
   count += 1;
  }
 if(count === 0) {
    return null;
  }
  return sum / count;
}
```

```
function average(numbers) {
  var sum = 0;
  var count = 0;
  for(i = 0; i < numbers.length; i++) {</pre>
    sum += numbers[i];
    count += 1;
  }
  if(count === 0) {
    return null;
  }
  return sum / count;
}
```

(defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
 [number 1])

(defn average [numbers]
 (reduce combine (map ->average numbers)))

Where do you start a computation?

a + 0 = a

(f a i)

(= (f a i) a)

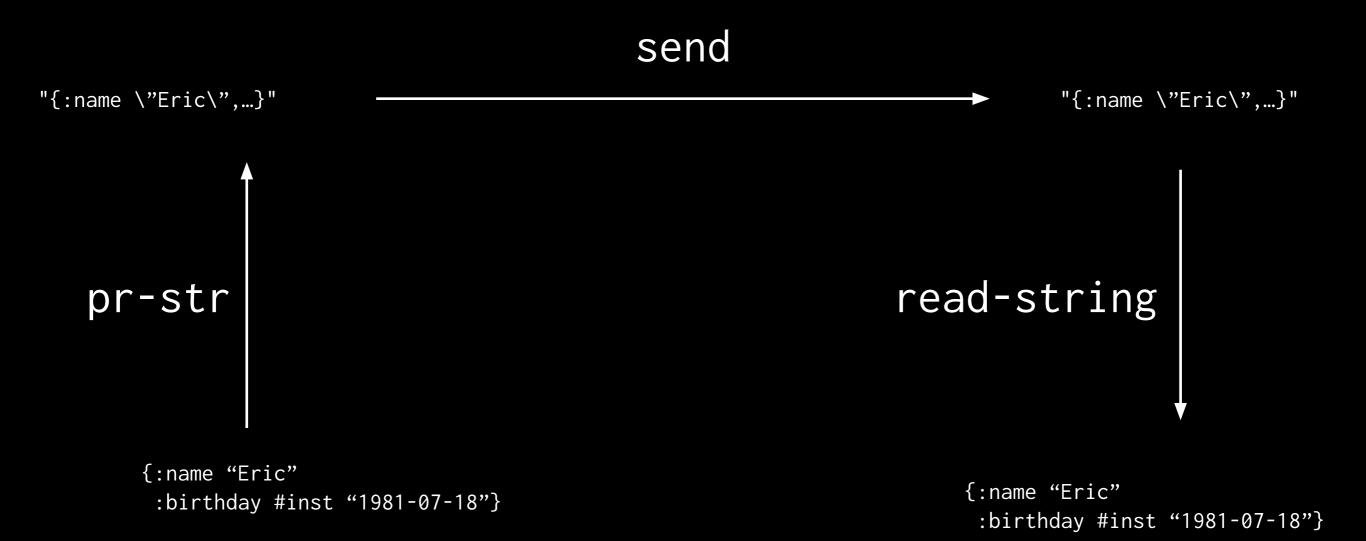
(defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
 [number 1])

(defn average [numbers]
 (reduce combine (map ->average numbers)))

```
function average(numbers) {
 var sum = 0;
  var count = 0;
 for(i = 0; i < numbers.length; i++) {
   sum += numbers[i];
   count += 1;
  }
 if(count === 0) {
    return null;
  }
  return sum / count;
}
```

(defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])


(defn ->average [number]
 [number 1])

(defn average [numbers]
 (reduce combine [0 0] (map ->average numbers)))

Going back and forth matters

Great for moving into a new space, doing a calculation, then moving back

(f a)

(g (f a))

(= (g (f a)) a)

(defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
 [number 1])

(defn average [numbers] (reduce combine [0 0] (map ->average numbers))) (defn combine [[sum1 count1] [sum2 count2]]
 [(+ sum1 sum2) (+ count1 count2)])

(defn ->average [number]
 [number 1])

(defn average-> [[sum count]]
 (/ sum count))

(defn average [numbers] (->> numbers (map ->average) (reduce combine [0 0]) average->))

Distributed

Messages arrive one or more times

Distributed

Independent workers have to coordinate to avoid duplicate work

Duplicates don't matter

(= (-> m
 (assoc :a "hello")
 (assoc :a "hello"))
 (-> m
 (assoc :a "hello"))

(= (f a) (f a))

(= (f (f a)) (f a))

(def button-state (atom {}))

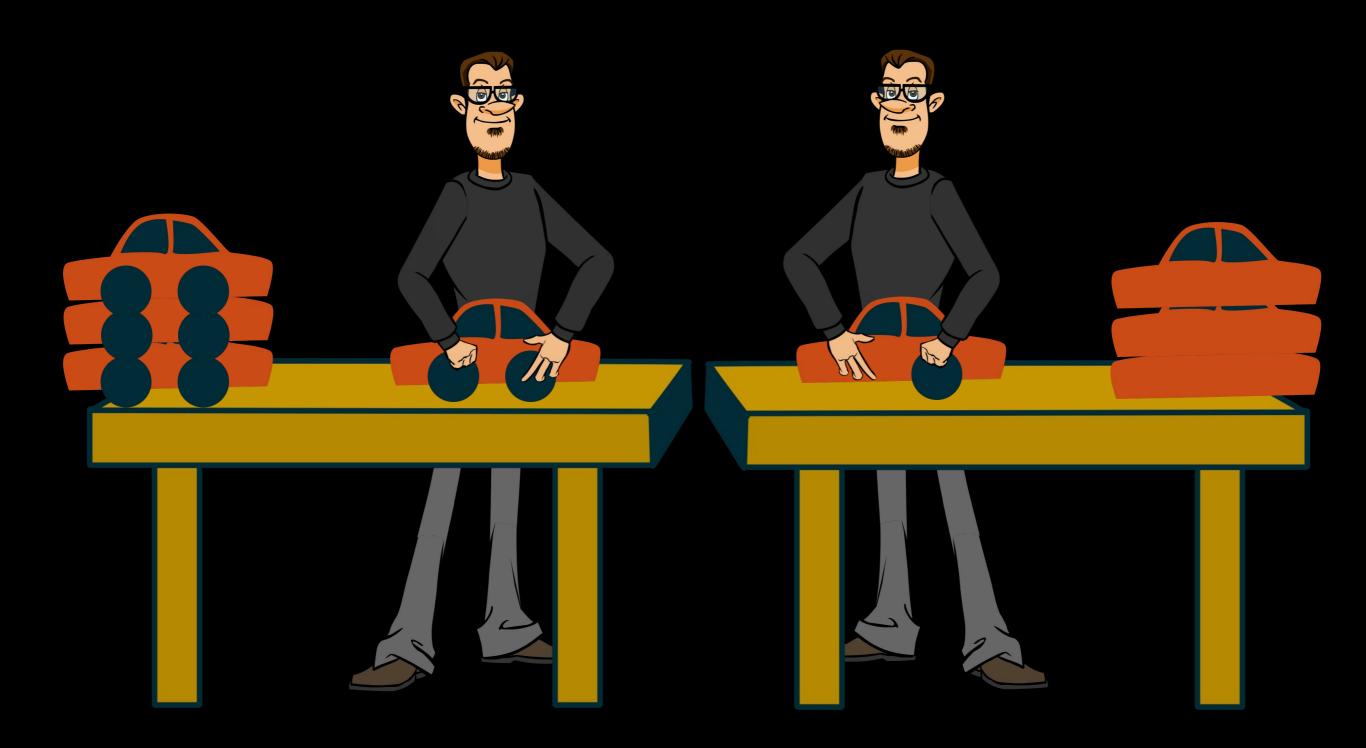
```
(defn press! [button-id]
  (swap! button-state assoc button-id true))
```

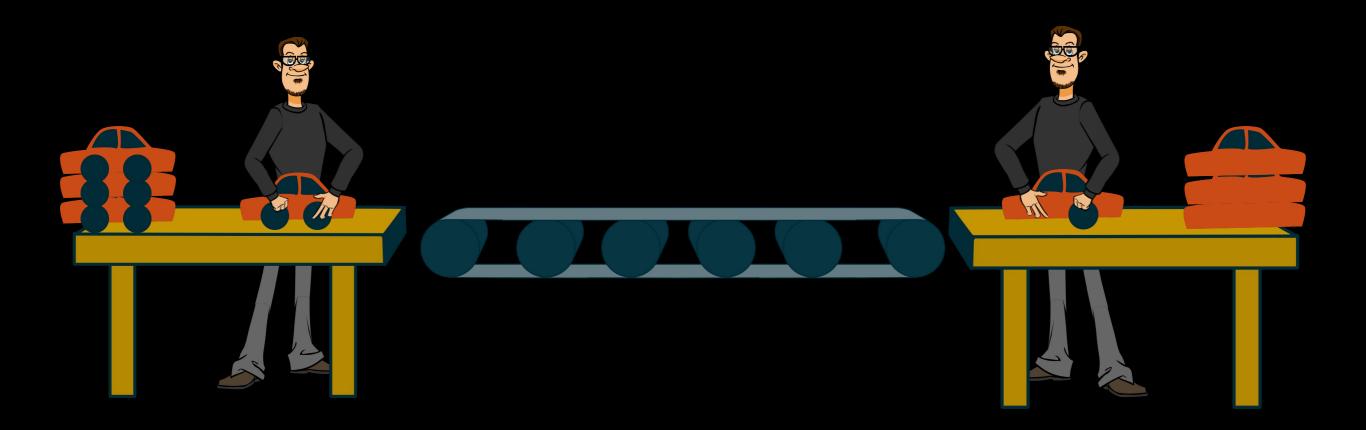
```
(press! :3rd-floor-north-up)
(press! :3rd-floor-north-up)
(press! :3rd-floor-north-up)
```

Nothing else matters

Know when to end

Circuit-breaking


a * b * c * 0 * d * e * f


a * 0 = 0

(f a z)

(= (f a z) z)

Splitting up work and recombining it matters

Great for arranging and rearranging work in a pipeline

Composing transducers

(= (->> cars)(map add-back-wheel) (map add-front-wheel)) (->> cars(map (comp add-front-wheel add-back-wheel))))

(= (map identity a) a)

(= (map identity a) a) (map g a)

(= (map identity a) a) (map f (map g a))

(= (map identity a) a) (map f (map g a)) (comp f g)

(= (map identity a) a)

(map f (map g a))
(map (comp f g) a)

(= (map identity a) a) (= (map f (map g a)) (map (comp f g) a))

Conclusions

Commutative	Order doesn't matter	(= (f a b) (f b a))
Associative	Grouping doesn't matter	(= (f (f a b) c) (f a (f b c)))
Identity value	Where to start	(= (f a i) a)
Zero value	When to stop	(= (f a z) z)
Idempotence	Duplicates don't matter	(= (f (f a)) (f a))
Reversibility	Going back and forth	(= (g (f a)) a)
Structure Preservation	Rearranging work	<pre>(= (m identity a) a) (= (m (comp f g) a) (m f (m g a)))</pre>

These properties are what allow us to do our work

(= (f a b) (f b a))) Algebraic properties make great test.check properties

Eric Normand LispCast

Follow Eric on:

