
Getting Started with
Functional Programming

in JavaScript

Eric Normand

Buying milk
• Drive to store

• Get shopping basket

• Walk to milk section

• Put milk in basket

• Walk to cashier

• Pay for milk

• Drive home

Making groceries
• Drive to store

• Get shopping basket

• For each item you need

• Walk to that section

• Put item in basket

• Walk to cashier

• Pay

• Drive home

Make shopping list
• Open fridge

• Look at contents

• Note down any items that are low/missing

• Close fridge

Making groceries
• Make shopping list

• Drive to store

• Get shopping basket

• For each item on list

• Walk to that section

• Put item in basket

• Walk to cashier

• Pay

• Drive home

Diff
• Given what we actually have

• and given what we need

• Write down a list of things we need that we don’t have

Make shopping list
• Open fridge

• Look at contents => what we actually have

• Close fridge

• Diff(what we have, what we need)

Actions
Open fridge

Look
Drive to store

Pay
Calculations

Diff
Pathfinding
Sum total

Data
Shopping list
Map of store

Receipt

Actions
the process of doing something, typically to achieve an aim

• Typically called Effects or Side-effects

• Depend on when you run them or how many times you
run them

Calculations
computation from inputs to outputs

• Eternal — outside of time

• doesn’t matter when or how many times

• Opaque

• don’t know what it does until you run it

Data
factual information used as a basis for reasoning, discussion,
or calculation

• Inert

• Self-identical

• It is what it is

• Requiring interpretation

Implementation
JavaScript

• Data — built-in types

• Arrays

• Objects

• Strings

• Numbers

• Calculations — pure functions

• Actions — impure functions

Recommendation:
Identify Actions, Calculations,
and Data in your existing code

var stuffIBuy = [
 “broccoli”, “milk”, “eggs”, “bread”
];
var shoppingList = [];

function makeShoppingList() {
 fridge.open();
 var contents = fridge.look();
 for(i = 0; i < stuffIBuy.length; i++) {
 if(contents.indexOf(stuffIBuy[i]) < 0) {
 shoppingList.push(stuffIBuy[i]);
 }
 }
 fridge.close();
}

var stuffIBuy = [
 “broccoli”, “milk”, “eggs”, “bread”
];
var shoppingList = [];

function makeShoppingList() {
 fridge.open();
 var contents = fridge.look();
 for(i = 0; i < stuffIBuy.length; i++) {
 if(contents.indexOf(stuffIBuy[i]) < 0) {
 shoppingList.push(stuffIBuy[i]);
 }
 }
 fridge.close();
}

var stuffIBuy = [
 “broccoli”, “milk”, “eggs”, “bread”
];
var shoppingList = [];

function makeShoppingList() {
 fridge.open();
 var contents = fridge.look();
 for(var i = 0; i < stuffIBuy.length; i++) {
 if(contents.indexOf(stuffIBuy[i]) < 0) {
 shoppingList.push(stuffIBuy[i]);
 }
 }
 fridge.close();
}

Data

Calculation

Action

Recommendation:
Avoid global mutable

state

var stuffIBuy = [
 “broccoli”, “milk”, “eggs”, “bread”
];
var shoppingList = [];

function makeShoppingList() {
 fridge.open();
 var contents = fridge.look();
 for(i = 0; i < stuffIBuy.length; i++) {
 if(contents.indexOf(stuffIBuy[i]) < 0) {
 shoppingList.push(stuffIBuy[i]);
 }
 }
 fridge.close();
}

var stuffIBuy = [
 “broccoli”, “milk”, “eggs”, “bread”
];

function makeShoppingList() {
 fridge.open();
 var contents = fridge.look();
 var shoppingList = [];
 for(i = 0; i < stuffIBuy.length; i++) {
 if(contents.indexOf(stuffIBuy[i]) < 0) {
 shoppingList.push(stuffIBuy[i]);
 }
 }
 fridge.close();
 return shoppingList;
}

Recommendation:
Refactor to separate out Actions

from Calculations from Data

var stuffIBuy = [
 “broccoli”, “milk”, “eggs”, “bread”
];

function diff(actual, needed) {
 var ret = [];
 for(i = 0; i < needed.length; i++) {
 if(actual.indexOf(needed[i]) < 0) {
 actual.push(needed[i]);
 }
 }
 return ret;
}

function makeShoppingList() {
 fridge.open();
 var contents = fridge.look();
 fridge.close();
 return diff(contents, stuffIBuy);
}

var stuffIBuy = [
 “broccoli”, “milk”, “eggs”, “bread”
];

function makeShoppingList() {
 fridge.open();
 var contents = fridge.look();
 var shoppingList = [];
 for(i = 0; i < stuffIBuy.length; i++) {
 if(contents.indexOf(stuffIBuy[i]) < 0) {
 shoppingList.push(stuffIBuy[i]);
 }
 }
 fridge.close();
 return shoppingList;
}

Calculations
• Much more testable

• Run whenever you want

• Run as many times as you want

• Define exact inputs and check outputs

• More reusable

Data
• Serializable

• Store to disk

• Send over the wire

• Usable in multiple contexts

Recommendation:
Create an Action function, create a

Calculation function,
and create a “convenience” function that

puts them together

Why use Functional
Programming?

What is Functional
Programming?

paradigm

a philosophical and theoretical framework of a scientific

school or discipline within which theories, laws, and

generalizations and the experiments performed in

support of them are formulated

Merriam-Webster

https://www.merriam-webster.com/dictionary/paradigm

philosophical or
theoretical framework,

world view

theories, laws,
generalizations

basic assumptions, ways
of thinking, methodology

Why use Functional
Programming?

What is Functional
Programming?

Goals of my Theory
• Explain what it is we (functional programmers) actually do

• in terms we can all understand

• Explain why it has advantages over other paradigms

• to people who haven’t done FP

• Avoid focusing on features

• Give explanatory and predictive power

• Self-described functional programmers should agree

My Theory of FP
Actions

Data

Calculations

Actions
the process of doing something, typically to achieve an aim

• Typically called Effects or Side-effects

• Depend on when you run them or how many times you run them

• Examples

• Sending a message over the network

• Writing to file system — other programs can see the change

• Changing or reading mutable state

Data
factual information used as a basis for reasoning, discussion, or calculation

• Inert

• Serializable

• Requiring interpretation

• Examples

• Numbers

• Bytes

• Strings

• Collections

Calculations
computation from inputs to outputs

• Mathematical functions

• Eternal — outside of time

• Referentially transparent

• Examples

• List concatenation

• Summing numbers

Contrast with OOP

OOP
Objects

References

Messages

Implementation

Haskell

• Data — built-in types and defined types

• Calculations — functions

• Actions — IO type

Implementation

Clojure

• Data — built-in types

• Calculations — pure functions

• Actions — impure functions

Further down the rabbit hole

• Everything “First-class”

• Data

• Calculations

• Actions

• Minimum necessary to program functionally in a language

Further down the rabbit hole

• Data may represent Calculations

• [:sum 0 1 2 3 4 5]

• Data may represent Actions

• [:send “some message”]

Domains are separate
Data

Data + Data => Data

Examples

• Addition

• Concatenation

Calculations

Calc + Calc => Calc

Examples

• compose

• juxtapose

Actions

Actn + Actn => Actn

Examples

• in sequence

• in parallel

Actions
• Contagious!

• Calculation + Action => Action

• Data + Action => Action

• Examples

• Print the square of a number — square => print!

• Parse the input as a number — read! => parse

Calculations
• Algebraic manipulation

• Turing complete

• implies the Halting problem

• Opaque

• What is this code going to do?

• Only way to know is to run it

Data

• Can represent something else

• Structure

• Known Big-O complexities

Refactorings
Actions

• Action => Action + Calculation

• Action => Action + Data

• Action => Action + Action

Calculations

• Calculation => Calculation + Data

• Calculation => Calculation + Calculation

Calculations can be
manipulated algebraically

• Know some properties without running

What counts as an Action?

Calculations

Timeless

Actions

Bound in time

Pure function Read/write to disk

Pure function
takes 24 hours to compute

Read/write to temp file as buffer

Actions
how many times they run

always matters - 0≠1≠more
launching a missile
sending an email

idempotent - 0≠1=more
setting public flag to true

free of side-effects - 0=1=more
GET request

reading mutable state

Actions
when they run

transactional read
guaranteed to be consistent

transactional+serialized writes
Order matters, but at least it’s some order

exactly once reads
Communicating Sequential Processes

Eric Normand

Follow Eric on:

Eric Normand @EricNormand

eric@lispcast.comlispcast.com

https://lispcast.com/
https://www.linkedin.com/in/eric-normand/
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://lispcast.com
https://lispcast.com/
https://lispcast.com/
https://lispcast.com
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://www.linkedin.com/in/eric-normand/

