What is
Functional
Programming?

Eric Normand
PurelyFunctional.tv

Outline

The problem with software: complexity
Mastering time

Mastering (state)space

Mastering architecture

A model of functional programming

The problem with software: complexity

Essential complexity

T :
s o S 4
N . jar 11. Liquid oxygen tank.
materiadg ‘& i
tank. 2
R 3 R
3 B R :
e S 1n
o B A
e T e G
& Gaargemernie, 3 28, Regulators. 39, Cruciform booster link.
7.F 3 17. Booster aerial. 29. RD-107. mounting. o,
8. Cor of 18 . ."‘d—. 41. Rear of Soyuz with engincs for
i R iohes e
- EEEE e PSR LSRR
: e Fa B

™~

tragjectories

re-entry

Rocket Science

Accidental complexity

threads

Lauren]

databases

network
equesfs

Software About Rocket Science

B accidental complexity

| essential complexity

imagine these parts filed
with dollar signs

unmanaged compexity

managed compexity

Sources of complexity

Possible histories Mastering time
Possible codepaths Mastering (state)space

Possible changes Mastering architecture

Mastering time

[shared variable ovenTemp = 100]

Timelines

A B
|

A: B:

read ovenTemp read ovenTemp

A: B:

write ovenTemp x 10 write ovenTemp + 10
to ovenTemp to ovenTemp

[shared variable ovenTemp = 100 J

6 Histories

A:
read ovenTemp

A:
read ovenTemp

A:
read ovenTemp

A:
write ovenTemp X 10
to ovenTemp

B:
read ovenTemp

B:
read ovenTemp

B:
read ovenTemp

B:
write ovenTemp + 10
to ovenTemp

A:
write ovenTemp x 10
to ovenTemp

B:
write ovenTemp + 10
to ovenTemp

Result: 1010

B:
write ovenTemp + 10
to ovenTemp

|
Result: 110

A:
write ovenTemp x 10
to ovenTemp

|
Result: 1000

I
B:
read ovenTemp

I
B:
read ovenTemp

I
B:
read ovenTemp

B:
write ovenTemp + 10
to ovenTemp

A:
read ovenTemp

A:
read ovenTemp

A:
read ovenTemp

B:
write ovenTemp + 10
to ovenTemp

A:
write ovenTemp X 10
to ovenTemp

A:
write ovenTemp X 10
to ovenTemp

A:
write ovenTemp X 10
to ovenTemp

Result: 1100

Result: 1000

B:
write ovenTemp + 10
to ovenTemp

|
Result: 110

JavaScript has this problem, too

var ovenTemperature = 100;

ajaxGet("http://api.com/number"”, function(number) {
ovenTemperature *= number;

1)

ajaxGet("http://api.com/number"”, function(number) {
ovenTemperature += number;

1);

Where do timelines come from?

Multiple threads
Multiple processes
Multiple machines

Async operations

What's the problem?

Many histories are more than we can keep in our heads
Different histories give different results

Sometimes we can't reproduce the bad history (heisenbug)

Number of possible histories

1e+06

800000

600000

400000

200000

Possible histories growth for two timelines

| I | | r I I |

one wilion possible |
histories with just |
12 operations

4 6 8 10 12 14 16 18
Number of operations per timeline

20

before

Timeline

77N\

after
3 actions

2 actions

actions \ /

/

eliminate / |

actions for

‘ shorter timelines

20 histories

6 histories

Timelines
' No shared resources,

A B dl histories give the same
| | result

No shared resources:
the two are isolated and
we don't have to worry
about interactions

Timelines

A B 6 actions = 924 histories
| | 3 actions = 20 histories
x2 = 400 histories

actions —

stop here and wait

Two sections
are independent

FP gives you
tools like "stop
here and wait"

Timelines
A B 6 actions = 924 histories

| | 3 actions = 20 histories

+10 +9 X2 400 histories
actions
that add

—_
1o a shar +3 +2
variable

stop here and wait ---------4 ommmmmm e two sections
are independent

FP gives you
tools like "stop
here and wait"

(shared variable x]

Timelines 2 actions = 6 histories
with 4 different

'?‘ |B answers
read x read x
write X + 3 to x write x X 3 to x

[shared variable x]

transactions 1 action = 2 histories

disdlow overlappingTimelines with 2 different
orderings A B answers

i i

read x read X
write x + 3to x write x X 3 to x
I I
K ! ! J either A goes first
or B goes first

these two transactions
can't happen at the same time

W€ Can use as many
cdlculations and data
as we want without
adding to possible
histories

inside this circle,
things do not lengthen
timelines

each action lengthens
a timeline

Mastering (state)space

Each conditional creates at least 2 branches
Branches multiply the number of possible codepaths
More codepaths means it's harder to hold in your head

Do all codepaths do the right thing?

in the ided world

the ided model's cases
map cleanly to the data
model cases

|deal
Model

Data
Model

sometimes the mapping

is convoluted

ldeal Data
Model Model

A
case goes unused

it there are extra
cases, two things can
happen

Ideal
Model

Data
Model

case gets overloaded

iy

Ideal
Model

Data
Model

cases go unrepresented

it there are missing
cases, two things can
happen

)

r—.

cases may get overloaded

Ideal
Model

'

Data
Model

Ideal
Model

Data
Model

inside this circle,
the number of cases
can be controled

inside this circle,
things do not lengthen
timelines

Mastering architecture

Guarding against unforeseen change

Stratified design

Layers built on layers

Each layer adds domain meaning to the layer below it

Dishes
gumbo, jambalaya, étouffée, etc

A model of functional programming

inside this circle,
the number of cases
can be controled

paper symbolizes
the long traditions of
record-keeping

data captures facts
about events

brains symbolize
planning and decisions

cdlculations compute or
transform inputs to outputs

instde this circle,
things do not lengthen
timelines

hands symboiize
affecting the world

actions have an effect outside of the timeline

Action + Action => Action
Action + Calculation => Action
Action + Data => Action

Calculation + Calculation => Calculation
Calculation + Data => Calculation

Data + Data => Data

W e }_

Eric Normand

LispCast

Follow Eric on:

IN Eric Normand y@EricNormand
@ lispcastcom X eric@lispcast.com

https://www.linkedin.com/in/eric-normand/
https://twitter.com/ericnormand
mailto:eric@lispcast.com
https://lispcast.com
https://lispcast.com

